DALTON FULL PAPER

Pierluigi Barbaro,^a Claudio Bianchini,*a Geraldo Capannesi,^b Lorella Di Luca,^d Franco Laschi,^c Debora Petroni,^d Piero A. Salvadori,^d Alberto Vacca ^e and Francesco Vizza *a

- ^a ISSECC-CNR, Via J. Nardi 39, Firenze-50132, Italy
- ^b ENEA-Casaccia, Rome-00060, Italy
- ^c Università di Siena, via AldoMoro 1, Siena-53100, Italy
- ^d CNR-IFC, via P. Salvi 8, Pisa-56100, Italy
- e Università di Firenze, via Maragliano 77, Firenze-50144, Italy

Received 28th March 2000, Accepted 31st May 2000 Published on the Web 30th June 2000

The new macrocycle 4,10-dimethyl-1,4,7,10-tetraazacyclododecane-1,7-diacetic acid (H₂Me₂DO2A, H₂L) has been synthesized and characterized. The basicity constants of the macrocycle and the stability constants of its complex formation with copper(II) ions have been determined in aqueous solution by potentiometry. The protonation sequence of the macrocycle has been studied by ¹H and ¹³C-{¹H} NMR spectroscopy. The data obtained are consistent with the first and second protonations taking place at the methyl-substituted nitrogen atoms, while the third and fourth protonations involve the two carboxylate arms. High-resolution NMR studies have revealed that the ethylenic protons in the tetraprotonated H₄L²⁺species are inequivalent due to multiple hydrogen bonds within the macrocycle ring, indicating that the system is locked in a rigid conformation on the NMR timescale. The molecular structure of the copper(II) complex [Cu(Me₂DO2A)]·2H₂O has been determined by a single crystal X-ray analysis. The macrocycle wraps the metal in a distorted octahedral geometry using the four nitrogen atoms and two oxygen atoms from the two carboxylate groups. These latter are cis to each other. The excellent stability of [Cu(Me₂DO2A)] at physiological pH is confirmed by a cyclic voltammetry study that shows the complex to be irreversibly reduced at $E_{\rm p}=-0.81$ V. The radioactive 64 Cu-labeled complex $[^{64}$ Cu(Me₂DO2A)] has been synthesized using ⁶⁴CuCl₂. Animal biodistribution studies have been performed by bolus injection in rabbit and followed by Positron Emission Tomography (PET), an in vivo imaging technique used in nuclear medicine to detect the regional distribution and concentration of positron emitting radionuclides. PET images showed that the tested compound has high uptake in liver, kidneys and bladder. A significant uptake of radioactivity is observed in brain.

Introduction

DOI: 10.1039/b002441o

Paramagnetic and/or radioactive metal complexes stabilized by polyazamacrocycles with dangling ligating groups 1 are receiving increasing attention for their considerable potential in diagnostic² and therapeutic medicine.³ The preference for this kind of polyazamacrocyclic complex over other ligand-metal systems is motivated by some favorable features: ease of synthesis, relatively small size, excellent kinetic and thermodynamic stability of the resulting metal complexes which are generally soluble in water and exhibit remarkable resistance to metal ion exchange in vivo.4 In addition, polyazamacrocyclic systems have the further advantage of being easily tuned and tailored so as to address specific issues regarding the dimensions of both the metal ion and the chelating cavity of the macrocycle, the relative positions of the donor atoms within the macrocyclic ring, the electronic and steric nature of the peripheral ligands. These comprise various anionic⁵ and neutral⁶ groups with different donor atoms and thus may determine the overall charge of the metal complexes.

Among the various radioisotopes suitable for clinical application in nuclear medicine, copper radionuclides exhibit a number of interesting features. Indeed, 64 Cu is a versatile radionuclide which exhibits both electron capture decay (41%) with associated Auger electron emission (E=6.5-0.8 keV) and β^- (40%, E=190 keV) and β^+ (19%, E=278 keV) nuclear decays. The half-life time of 64 Cu (12.7 h) is long enough to allow for the synthesis of many radiopharmaceutical compounds and is compatible with *in vivo* kinetics of many biochemical processes. Interestingly, β^+ emission makes 64 Cu suitable for application in Positron Emission Tomography (PET), an important imaging diagnostic technique which is currently used for the assessment of *in vivo* biological processes, while β^- particle emission and Auger electrons makes this radionuclide applicable to metabolic radiotherapy.

In general, copper(II) complexes with nitrogen ligands show excellent blood stability *in vivo*. ⁸⁻¹⁰ Some examples of polyazamacrocycle complexes of ⁶²Cu, ⁶⁴Cu^{II} and ⁶⁷Cu^{II} conjugated to human serum albumin have been used for blood pool imaging ¹¹ and used in biomedical application as bifunctional agents, *e.g.* bound to monoclonal antibodies. ¹²⁻²¹

Relevant studies have recently been reported by Anderson and co-workers ²² on the biodistribution of some azamacrocycle complexes of ⁶⁴Cu in Dawley rats. These authors have clearly

[†] Electronic supplementary information (ESI) available: plots of ¹³C NMR chemical shift *vs.* pH, NOESY, COSY and HMQC spectra. See http://www.rsc.org/suppdata/dt/b0/b0024410/

shown that the biodistribution of ⁶⁴Cu labeled macrocycles depends on both the macrocycle skeleton and the formal charge of the complex.

The potential of radioactive copper(II) ions/polyazamacrocycle assemblies in diagnostic and therapeutic medicine attracted our attention and prompted us to develop a research project aimed at synthesizing new complexes of ⁶⁴Cu^{II} with functionalized polyazamacrocycles. Our primary strategy was to look at both ⁶⁴Cu complexes, as they allow for PET monitoring, and neutral polyazamacrocyclic complexes. Indeed, we thought that, by varying the lipophilicity of the complexes, different specificities in their biodistribution would have been obtained and specific biochemical processes would have been induced.

In this paper are described the synthesis and characterization of a new N-functionalized cyclen macrocycle, 4,10-dimethyl-1,4,7,10-tetraazacyclododecane-1,7-diacetic acid) (H_2Me_2-DO2A) and of its copper(II) complex $[Cu(Me_2DO2A)]$ 1.

H₂Me₂DO2A

The ⁶⁴Cu labeled complex was also synthesized and used to carry out PET biodistribution studies following *in vivo* administration to rabbit. Although to a low extent, this complex was found to cross the blood–brain barrier. This is particularly important as brain is an interesting target from the viewpoint of both pathophysiology and physiology and many research efforts are being made to prepare new tracers to study its function. Radiotracer uptake by brain is actually related to the ability of the radionuclide complex to cross the blood–brain barrier as only relatively low-molecular-weight, neutral and lipophilic complexes may cross the membrane. A deep understanding of the *in vivo* biochemistry and clearance properties of the radiometal chelate is hence essential to design specific radiotracers for clinical application.

Experimental

General information

1,7-Dimethyl-1,4,7,10-tetraazacyclododecane was prepared as described in the literature.23 Deuteriated solvents for NMR measurements (Merck, Aldrich) were dried over molecular sieves. All the other reagents and chemicals were reagent-grade and used as received from commercial suppliers. Infrared spectra were recorded on a Perkin-Elmer 1600 Series FT-IR spectrophotometer using samples mulled in Nujol between KBr plates, ¹H and ¹³C-{¹H} NMR spectra at 200.13 and 50.32 MHz, respectively (Bruker 200-ACP) or at 500.132 and 125.76 MHz, respectively (Bruker Avance DRX-500). Chemical shifts are relative to tetramethylsilane as external reference or calibrated against solvent resonances. The assignments of the signals resulted from 2-D ¹H COSY, ¹H NOESY and proton detected ¹H-¹³C correlations using degassed non-spinning samples. 2-D NMR spectra were recorded on a Bruker Avance DRX-500 spectrometer using pulse sequences suitable for phase-sensitive representations using TPPI (time proportional phase incrementation). The ¹H–¹³C correlations ²⁴ were recorded using an HMQC (heteronuclear multiple quantum correlation) sequence which allows for the measurements of $J_{\rm HC}$ coupling constants. ¹H NOESY ²⁵ spectra were acquired with 1024 increments of size 2K covering the full range in both dimensions with a mixing time of 600 ms.

Solutions of Me₂DO2A (0.03 M) for NMR pH titration

were prepared in D₂O and the desired pD was adjusted with standard 1 M solutions of DCl or KOD. The final pD was determined with an Orion Research 601 I Digital Ionalyzer apparatus equipped with a combined glass Ag-AgCl microelectrode (Ingold) which was standardized against standard aqueous buffers at pH 4 and 7. The pD was calculated using the empirical relationship $D = \text{``pH meter reading''} + 0.40.^{26a,b}$ Although pD values and pH values cannot strictly be compared, it was found that pD values for a number of buffers in D₂O lie about 0.6 logarithmic unit higher than the pH values for the same buffers of the same concentration in H₂O.26c This allows a rough correction for the deuterium isotope effect using the relation pH = pD -0.6. ^{26c,d} The ¹H and ¹³C NMR spectra for pH titrations were performed on the Bruker 200-ACP (200.13; 50.32 MHz) instrument at a probe temperature of 25 °C. GC analyses were performed on a Shimadzu GC-14A gas chromatograph equipped with a flame ionization detector and a 30 m (0.25 mm i.d., 0.25 µm film thickness) SPB-1 Supelco fused silica capillary column. GCMS analyses were performed on a Shimadzu QP 5000 apparatus equipped with a column identical to that used for GC analyses. Elemental analyses (C, H, N) were performed using a Carlo Erba Model 1106 elemental analyzer. Conductivities were measured with a Model 990101 Orion Conductance Cell connected to a Model 101 conductivity meter.

Preparations

4,10-Dimethyl-1,4,7,10-tetraazacyclododecane-1,7-diacetic acid-hydrochloric acid-water (1/3/1) (H₂Me₂DO2A·3HCl·H₂O). Chloroacetic acid (9.4 g, 0.1 mmol) in water (20 cm³) was added to a solution of 1,7-dimethyl-1,4,7,10-tetraazacyclododecane (2 g, 0.01 mmol) in water (30 cm³) and the pH adjusted to 9.0 with 5 M NaOH. The temperature was raised to 70 °C and the pH maintained between 8.5 and 9.0 with addition of 5 M NaOH as necessary. The solution was maintained at this temperature for 15 h, then cooled to room temperature. After the pH was brought to 7 with 5 M HCl, the solution was passed through a cation-exchange column (Amberlite IR 120; H⁺ form, bed volume 40 cm³). The column was washed with water (150 cm³) until the eluent was neutral and the ligand brought off the column with 300 cm³ of 0.5 M NH₄OH. The solvent was removed under vacuum to yield the ammonium salt of the ligand. This was dissolved in 100 cm³ of deionized water and passed through a column of anion-exchange resin (Amberlite IRA 900, in its alkaline form, bed volume 40 cm³) which was washed with water (250 cm³) before eluting the ligand with 100 cm³ of 5 M HCl. The solvent was removed in vacuum to leave a white solid of formula C₁₄H₂₈N₄O₄·3HCl·H₂O. Yield 40%. The numbering scheme for the carbon and hydrogen atoms is given in Fig. 2. ¹H NMR (500.132 MHz, D_2O , pH 2.0, 25 °C): δ 2.91 (6 H, s, NMe), 3.52 (4 H, s, H_D), 3.44 (4 H, ddd, H_B, $^2J_{\rm BB'}$ = 14.2, $^3J_{\rm CB}$ = 3.5, $^3J_{\rm C'B}$ = 7.2), 3.24 (4 H, ddd, H_B, $^3J_{\rm CB'}$ = 7.5, $^3J_{\rm C'B'}$ = 3.3), 3.09 (4 H, ddd, H_C, $^2J_{\rm CC'}$ = 15.4 Hz) and 2.94 (4 H, ddd, H_C). 13 C-{ 1 H} NMR (125.76 MHz, D₂O, pH 2.0, 25 °C): δ 176.10 (C_E), 43.60 (C_A), 54.79 (C_D), 53.86 (C_B) and 49.80 (C_C) (Found: C_C) (Found: C_C), 43.60 (C_A), 54.79 (C_D), 53.86 (C_B) and 49.80 (C_C) requires C, 38.00; H, 7.52; N, 12.67%).

[Cu(Me₂DO2A)]·3H₂O. CAUTION: perchlorate salts of metal complexes are potentially explosive and must be handled with care. $H_2Me_2DO2A\cdot 3HCl\cdot H_2O$ (0.2 g, 0.45 mmol) was dissolved in water (5 cm³) and the pH adjusted to 7.4 by addition of 10 M NaOH. A solution of Cu(ClO₄)₂·6H₂O (0.166 mmol) in ethanol (10 cm³) was slowly added at room temperature. The resulting solution was gently heated to 50 °C for 5 min. On addition of ethanol (15 cm³) and standing at room temperature, blue crystals slowly separated which were filtered off and then recrystallized from 1:3 water—ethanol. Yield 70% (Found: C, 39.2; H, 7.58; N, 13.01%. $C_{14}H_{26}CuN_4O_4\cdot 3H_2O$ requires C, 38.93; H, 7.47; N, 12.97%); IR ν_{asym}/cm^{-1} 1610 (CO₂⁻). Crystals

of [Cu(Me₂DO2A)]·3H₂O, suitable for an X-ray analysis, were obtained by slow recrystallization from a diluted water/EtOH/DMF solution at room temperature.

[⁶⁴Cu(Me₂DO2A)]. No carrier free ⁶⁴Cu was produced at the TRIGA nuclear reactor of Ente Nazionale Energie Alternative (ENEA)-Casaccia (Rome). Target material was made of ultra pure CuCl₂·2H₂O and ranged from 25 to 50 mg (corresponding to 10–20 mg of copper); the target blades were quartz and aluminium. Final activity, after 26 hours of neutron bombardment (2.6 × 10¹³ n⁴ cm⁻² s⁻¹ at 220 °C) was 7.5 mCi mg⁻¹ (99.99% of radiochemistry purity). To a solution of Me₂DO2A·3HCl·H₂O (0.01 g, 0.026 mmol) in 1 cm³ of water was added 150 μL of a solution of ⁶⁴CuCl₂ in 0.1 M HCl (0.024 mmol, 500 μCi) at room temperature. The pH was adjusted to 7.4 by addition of 5 M NaOH. The resulting solution changed from light to dark blue indicating formation of the copper complex. This solution was used for biodistribution studies.

Potentiometry

NaClO₄ and NMe₄Cl were analytical grade commercial products (Merck), purified by double recrystallization from ethanol-water prior to use. Carbon dioxide-free water was produced from deionized water which was distilled twice in a quartz apparatus and stored under purified nitrogen. An approximately 0.15 M NMe₄OH solution, prepared by dilution of a commercial concentrated solution (Fluka, puriss. p. a.), was stored under nitrogen and its concentration checked before and after each potentiometric experiment by titration against potassium hydrogenphthalate (Fluka, puriss. p. a.). A 0.1 M stock solution of copper chloride was prepared by dissolving analytical grade CuCl₂·2H₂O (Merck) in water and the copper content determined gravimetrically as salicylaldoximate. emf titrations were carried out using a Crison Micro pH 2002 potentiometer fitted with a Metrohm combined glass electrode (model 6.0204.000) and a Hamilton Microlab M motor-driven syringe under the control of an appropriate program ²⁷ running on an IBM PS/2 model 40 personal computer. The solution to be titrated was magnetically stirred and thermostatted at 298.2 ± 0.1 K in a water-jacketed vessel. A stream of water presaturated with nitrogen gas was passed over the solution in order to prevent contamination by atmospheric carbon dioxide. The electrode was calibrated in terms of hydrogen ion concentration [H₃O⁺] according to the Gran procedure ²⁸ by titrating with 0.15 M NMe₄OH solution (about 0.7 cm³) from the syringe known volumes (from 20 to 22 cm³) of 0.015 M HCl solution, the ionic strength being adjusted to 0.15 M with NMe₄Cl. The log value of the ionic product of water $(K_w = [H_3O^+][OH^-])$ was found to be -13.80 under these conditions.

The potentiometric measurements were performed by adding the 0.15 M NMe₄OH solution to a solution containing H₂Me₂DO2A·3HCl·H₂O (ca. 1 mM). In the copper(II) complex formation experiments the solution in the vessel contained copper perchlorate and the ligand in approximately equimolar ratio. Owing to the known propensity of macrocyclic ligands containing carboxylate groups to form sodium complexes, potentiometric titrations have been made on solutions containing as inert electrolytes the two salts NMe₄Cl and NaClO₄ so adjusted that the total ionic strength was constant at 0.15 M. Such a procedure allowed us to determine the formation constant of a sodium complex formed with the ligand under investigation. Data were collected in the $-\log[H_3O^+]$ range 2.5– 11.0; 157 data points from three curves were used for the determination of the protonation and sodium complex formation constants and 135 data points for the determination of the copper(II) complex formation constants. Equilibration of the titration solution following the addition of each aliquot of the hydroxide solution was attained fairly rapidly in the protonation experiments, whereas in the complex formation

experiments it was necessary to wait up to 30 minutes to obtain a steady potential reading. The data were processed using the program HYPERQUAD.²⁹

X-Band EPR spectra

X-Band EPR spectra were recorded on a Bruker Spectrometer ER 200-SR DD operating at v = 9.44 GHz. The H_0 applied external magnetic field was calibrated by using a Varian F-8 Fluxmeter and the operational frequency v was tested with a Hewlett-Packard model X5-32B Wavemeter by using the solid state sample DPPH (stable diphenylpicrylhydrazyl free radical) as suitable field marker. The corresponding $g_{averaged}$ value was 2.0036. The actual temperature was controlled using a Bruker B-ST 100/70 unit with an accuracy of ± 1 K. The a_i hyperfine splittings were measured by the peak-to-peak distance of the four copper(II) isotropic or anisotropic lines in both the correspondingly resolved signals, and the relevant A_i parameters calculated. The isotropic EPR intensity I_{iso} measurements were obtained from the copper(II) isotropic spectra by using the relationship $I_{iso} = (\Delta H_{iso})^2 h$, where ΔH_{iso} is the linewidth of the $m_I = +3/2$ line (the fourth high-field copper(II) absorption line is the narrowest one) and h the corresponding height.³⁰ The best fit computed values of the copper(II) EPR parameters were evaluated by using appropriate simulation procedures (SIM14a and ESRMGR programs).³¹ In order to have quantitative spectral reproducibility, the copper(II) complex samples were introduced into a calibrated quartz capillary tube permanently positioned in the rectangular resonance cavity.

Cyclic voltammetry

Cyclic voltammetry was performed in a three-electrode cell having a palladium disk working electrode (1.5 mm in diameter) surrounded by a platinum-spiral counter electrode and an aqueous saturated calomel reference electrode (SCE) mounted with a Luggin capillary. Either a BAS 100A electrochemical analyzer or a multipurpose Amel instrument (a Model 566 analog function generator and a model 522 potentiostat) were used as polarizing units. Controlled potential coulometry was performed in an H-shaped cell with anodic and cathodic compartments separated by a sintered-glass disk. The working macroelectrode was a platinum gauze; a mercury pool was used as the counter electrode. The Amel potentiostat was connected to an Amel Model 558 integrator. All the potential values are referred to the SCE.

Crystallography

Experimental data were recorded at room temperature on an Enraf-Nonius CAD4 diffractometer using graphite-monochromated Mo-K α radiation. Atomic scattering factors were taken from ref. 32 with anomalous dispersion corrections from ref. 33. An empirical absorption correction was applied by using the program XABS ³⁴ with transmission factors of 0.820 and 1.467. The computational work was performed with a Digital Dec 5000/200 workstation using SHELX 93 ^{35a} and SIR 92. ^{35b} The structure was solved by direct methods ³⁶ and all nonhydrogen atoms were found through a series of $F_{\rm o}$ Fourier maps. Refinement was done by full-matrix least squares calculations, initially with isotropic thermal parameters, and then with anisotropic thermal parameters for all the atoms but the hydrogens. Crystallographic details are reported in Table 2.

CCDC reference number 186/2012.

See http://www.rsc.org/suppdata/dt/b0/b002441o/ for crystallographic files in .cif format.

Biodistribution studies

Rabbit was selected as animal model. The animal was anaesthetized and placed within the field of view (FOV) of the tomograph in the transaxial position (in this way the body of

Table 1 Comparison of the protonation constants for Me₂DO2A (298.2 K) with those of other related macrocycles

Ligand	$\log K_1$	$\log K_2$	$\log K_3$	$\log K_4$	Conditions	
Me ₂ DO2A ^a	11.38(1)	10.38(1)	3.90(1)	2.30(1)	0.15 M NMe ₄ Cl	
DO2A ^b	11.45(2)	9.45(3)	4.00(1)	2.36(3)	0.1 M NEt ₄ ClO ₄	
DO3A ^c	11.59(3)	9.24(3)	4.43(2)	3.48(3)	0.1 M NMe ₄ Cl	
DOTA ^c	11.73(3)	9.40(2)	4.50(4)	4.19(6)	0.1 M NMe ₄ Cl	
cyclen ^a	10.97	9.87	1.5	0.7	0.5 M KNO ₃	

Values in parentheses are standard deviations in the last significant figure. ^a This work. ^b Ref. 40. ^c Ref. 37; DO3A = 1,4,7,10-tetraazacyclododecane-1,4,7-triacetic acid, DOTA = 1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid. ^d Ref. 49.

the animal fitted exactly the dimensions of the PET scanner FOV and images spanned from head to tail). An aqueous solution (1 cm³) of [64Cu(Me₂DO2A)] (≈400 μCi), prepared as previously described, was diluted with saline (1 cm³) and injected as a single bolus via the ear marginal vein of rabbit. Images were acquired by a CTI ECAT 911 4/12 PET scanner (4 rings of 512 BGO detectors; 4.5 cm axial field of view) having a transaxial spatial resolution of 6 mm. 15 frames of 1 min and 15 frames of 5 min starting at the moment of injection were acquired within a time of 90 min. Each frame yielded a set of 7 consecutive tomographic images (tomographic slice) each representing the topographic distribution of the radioactivity across the animal medial line (head to tail). Each tomographic slice was at about 4.5 mm from the other. The image unit $(voxel = pixel dimensions \times slice thickness)$ represented a volume of 70 µl.

Results and discussion

Synthesis and characterization of the macrocycle 4,10-dimethyl-1,4,7,10-tetraazacyclododecane-1,7-diacetic acid (H_2L)

This new macrocycle was synthesized by reaction of 1,7-dimethyl-1,4,7,10-tetraazacyclododecane with chloroacetic acid in alkaline solution at 70 °C for 15 h. Throughout the reaction time the pH value of the water solution was maintained in between 8.5 and 9.0 by addition of NaOH. The product separation was accomplished by ion-exchange chromatography. The ligand was isolated in its protonated form $H_2Me_2DO2A\cdot 3HCl\cdot H_2O$ as a white solid which is soluble in both water and polar organic solvents (MeCN, CHCl₃).

The refined protonation constants of the conjugate base Me_2DO2A were determined by potentiometric titration of $H_2Me_2DO2A \cdot 3HCl$ with NMe_4OH using 0.15 M NMe_4Cl as background electrolyte. The values obtained for K_1 , K_2 , K_3 and K_4 are reported in Table 1 and refer to the equations $L^{2-} + H^+ \rightleftharpoons HL^-$, $HL^- + H^+ \rightleftharpoons H_2L$, $H_2L + H^+ \rightleftharpoons H_3L^+$, $H_3L^+ + H^+ \rightleftharpoons H_4L^{2+}$, respectively. For comparative purposes, the protonation constants of some related macrocycles are given in Table 1. The pattern of the protonation constants is similar within the macrocycles examined 37 and consistent with the first two protonations occurring at two nitrogen atoms.

In line with all the other macrocycles, Me_2DO2A exhibits much larger constants for the first two protonations than for the third and fourth steps. For the parent macrocycle cyclen (1,4,7,10-tetraazacyclododecane), this trend is dramatically enhanced by the lack of carboxylate groups which makes the electrostatic repulsion within the highly protonated species H_3L^{3+} and H_4L^{4+} the factor responsible for the remarkable decrease of K_3 and K_4 . Interestingly, the second protonation constant of Me_2DO2A is the highest among those reported for the macrocycles of Table 1. As compared to DO2A $(1,4,7,10\text{-tetraazacyclododecane-1,7-diacetic acid)$, this result apparently clashes with the general rule that tertiary amines are less basic than secondary amines in water. For macrocyclic polyamines, this phenomenon has previously been observed, however. ³⁸

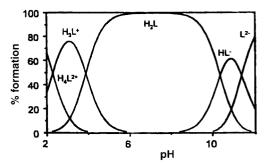


Fig. 1 Speciation diagram of Me₂DO2A protonation.

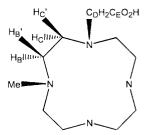


Fig. 2 Sketch of H₂Me₂DO2A with the labeling scheme used.

In the case of Me_2DO2A , one may argue whether the site of the first protonation is either a methyl-substituted N atom or an acetyl-substituted N atom. Notwithstanding that protonation of amines bearing a β -carboxylate group is often assisted by hydrogen bonding interaction with the acetate side-chain, ³⁹ the first protonation of Me_2DO2A takes place at one of the methyl-substituted nitrogen atoms as shown by variable-pH ¹H and ¹³C NMR titration experiments (see below). The second protonation similarly involves the *trans* NMe group, while the constants K_3 and K_4 are assigned to the protonations of the two carboxylate groups on the basis of ¹³C NMR studies as well as the similar protonation pattern of DO2A. ⁴⁰ The distribution of the chemical species derived from Me_2DO2A at different pH values is shown in Fig. 1.

In order to gain insight into the protonation process as well as the solution structure of the macrocycle, a ${}^{1}H$ and ${}^{13}C$ -{ ${}^{1}H$ } NMR analysis has been carried in the pH range from 1 to 13 using the potassium salt of the ligand. A sketch of the macrocyclic ligand together with the labeling scheme adopted for the NMR assignments is shown in Fig. 2. At very alkaline pH values (12.5, 25 °C), where, according to the potentiometric results, the only species in solution is the fully deprotonated dianion Me₂DO2A (L²⁻), the macrocycle is fluxional as shown by three broad singlets of relative intensities 2:8:3 in the ¹H NMR spectrum (Fig. 3, trace g). These resonances are assigned to the acetate methylene protons (H_D), the ethylene bridge protons $(H_{BB'}/_{CC'})$ and the methyl protons (H_A) . Independent of the pH value, the methylene (H_D) and methyl protons appear as two sharp singlets. On decreasing the pH, however, the ethylene bridge resonance gradually splits into four resolved signals of equal intensity ultimately to give a sharp ddd spin pattern at pH 2 (Fig. 3, trace a).

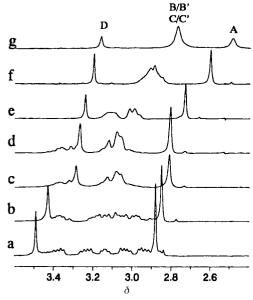


Fig. 3 ^{-1}H NMR spectra of Me₂DO2A at different pH measured at 200 MHz and 25 °C: (a) pH 2; (b) 4; (c) 5; (d) 9; (e) 10.3; (f) 11; (g) 12.5.

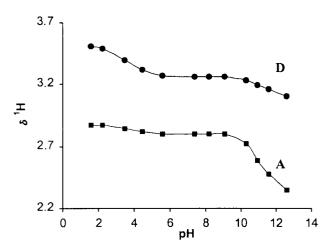


Fig. 4 1 H NMR chemical shifts of H_{A} and H_{D} protons of Me₂DO2A versus pH measured at 200 MHz and 25 $^{\circ}$ C.

A plot of the chemical shifts observed for the methyl (H_A) and CH₂CO₂ (H_D) protons as a function of the pH value is shown in Fig. 4. From this, one may readily infer that the first strong inflection, between pH 12.5 and 9, involves proton H_A and, to a smaller extent, proton H_D. This finding is consistent with the potentiometric measurements and confirms that the first two protonations occur at the two nitrogen atoms bearing methyl groups. Indeed, it is known that the protonation of a basic site leads to a deshielding of the adjacent methyl groups and thus to a low-field shift of the corresponding resonance.41 In accord with the potentiometric results, indicating that H₂L is the predominant species between pH 5 and 9, the ¹H NMR chemical shifts of the H_A and H_D nuclei do not significantly change in this pH range. The ¹H NMR spectrum recorded at pH 7 is shown in Fig. 5 (trace a, 20 °C; trace b, 90 °C). The assignments of the ¹H and ¹³C resonances at pH 7 were obtained from 2-D ¹H COSY, ¹H-¹³C correlations and ¹H NOESY spectra (reported as supplementary material). Variable-temperature ¹H NMR experiments showed that H₂L is not conformationally rigid over the temperature range from 4 to 90 °C. The ethylene chain protons give rise to four distinct signals at low temperature, whereas they collapse to two broad resonances of 1:1 relative intensity at higher temperature.

The ¹H NMR titration curve of Me₂DO2A (Fig. 4) shows a second strong inflection point at a pH value between 5 and 2 which is related to a significant shift of the acetate methylene

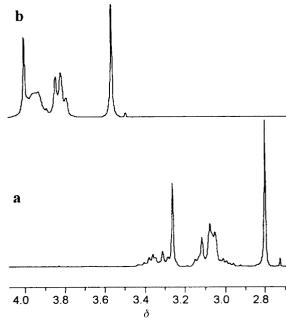
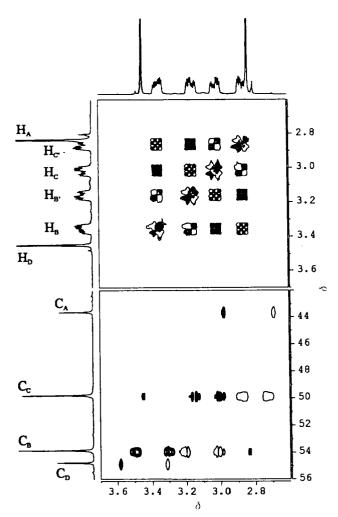
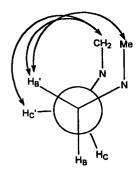


Fig. 5 $\,^{1}H$ NMR spectra of Me₂DO2A at pH 7: (a) at 20 $^{\circ}C;$ (b) at 90 $^{\circ}C.$

protons (H_D). This effect is attributed to the occurrence of the third and fourth protonation steps at the carboxylate groups and ultimately supports the potentiometric results according to which the predominant species at pH 2 is the four-protonated dication H_4L^{2+} .


The H₄L²⁺ species has unambiguously been characterized in solution by means of ¹H and ¹³C-{¹H} NMR spectroscopy. All the assignments were made on the basis of 2-D ¹H COSY, ¹H-¹³C correlations and ¹H NOESY spectra. A section of the ¹H COSY and ¹H-¹³C correlations together with the corresponding 1-D spectra is shown in Fig. 6. The ¹H NMR linewidth and the spin pattern do not change significantly in the temperature range from 4 to 70 °C, thus indicating that the dication is locked in a single preferred conformation on the NMR timescale.

A single set of ^{1}H and ^{13}C resonances for the A, B(B'), C(C') and D nuclei are observed in the ^{1}H and $^{13}C-\{^{1}H\}$ spectra, thus showing that the four ethylene bridges as well as the two couples of CH₃N and CH₂CO₂ groups are chemically equivalent. The protons of each CH₂ bridging unit are diastereotopic with vicinal coupling constant $^{3}J_{HH}$ ($^{3}J_{CB}=3.5$, $^{3}J_{C'B}=7.2$, $^{3}J_{C'B'}=7.5$, $^{3}J_{C'B'}=3.3$ Hz) consistent with a time-averaged preferred conformation close to that schematically represented in Fig. 7. A similar coupling pattern has been reported by Sherry and co-workers for the protons of the ethylene ring moiety in DO2A complexes with Mg^{II}. Ca^{II} and La^{III} at 75 °C. 42


DO2A complexes with Mg^{II}, Ca^{II} and La^{III} at 75 °C. ⁴²

The conformation proposed in Fig. 7 is supported by the strong NOE interactions between the CH₃ and H_{B'} protons and between the "CH₂CO₂" and H_{B'} and H_{C'} protons. The stereochemical rigidity of the tetraprotonated species H₄L²⁺ is attributed to the occurrence of both multiple hydrogen bonds within the macrocyclic ring and the presence of methyl-substituted nitrogen atoms. *trans* Couplings, as large as 14 Hz, which are typical for highly rigid macrocyclic rings, such as La(DOTA)²⁻ described by Aime *et al.* have not been detected, however. ⁴³

A 13 C-{ 1 H} NMR study at different pH values has also been carried out. At pH 13, five peaks at δ 42.3 (C_A), 50.72 (C_C), 55.47 (C_B), 59.97 (C_D) and 181.8 (C_E) are observed. Decreasing the pH from 13 to 10 does not significantly affect these resonances which are only slightly shifted upfield. Below pH 5 the situation changes only for the C_E and C_D resonances that, at pH 1, move from δ 180.24 and 58.5 to 176.4 and 55.04, respectively, thus indicating that the third and fourth protonations take place at the carboxylate groups. The 13 C-{ 1 H}

Fig. 6 Section of a 2-D ¹H COSY NMR spectrum (upper) and ¹H $^{-13}$ C NMR correlations (lower) of the species H₄L²⁺ (D₂O, pH 2, 25 °C). Filled and empty circles represent positively and negatively phased peaks, respectively.

Fig. 7 Schematic representation of the conformation of each CH₃NCH₂CH₂NCH₂CO₂ unit in the dication H₄L²⁺. Significant NOE interactions are indicated by arrows (500.132 MHz, 25 °C, mixing time 600 ms).

NMR spectrum of $H_2Me_2DO2A\cdot 3HCl$ in D_2O contains five sharp peaks at δ 43.59 (C_A), 49.8 (C_C), 53.85 (C_B), 54.78 (C_D) and 176.09 (C_E).

Synthesis and characterization of [Cu(Me₂DO2A)]

The reaction of hydrated Cu(ClO₄)₂ with an aqueous solution of H₂Me₂DO2A·3HCl at pH 7.4 yields a neutral blue complex which analyzes as [Cu(Me₂DO2A)]·3H₂O. The complex is soluble in water and in MeOH but not in BuOH. In the IR spectrum, the $\nu_{\rm asym}({\rm CO_2}^-)$ band falls at 1610 cm $^{-1}$ as expected for η^1 -O acetate groups. 44

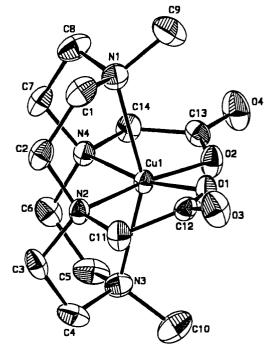

The solid state structure of [Cu(Me₂DO2A)]·3H₂O has been determined by a single crystal X-ray diffraction analysis. In

Table 2 Summary of crystallographic data for the complex [Cu(Me₂-DO2A)]·3H₂O

Chemical formula	$C_{14}H_{26}CuN_4O_4$
Formula weight	377.93
Crystal system	Orthorhombic
Space group	Fdd2
μ/mm^{-1}	1.378
a/Å	24.419(5)
b/Å	31.207(5)
c/Å	8.475(5)
$V/\text{Å}^3$	6458(4)
T/K	293(2)
Z	16
Measured/independent	1962
reflections	[R(int) = 0.0000]
Final R1, $wR2$ [$I > 2\sigma(I)$]	0.0318, 0.0835
(all data)	0.0372, 0.0864

Table 3 Selected bond lengths [Å] and angles [°]

Cu(1)–O(2)	1.952(3)	Cu(1)–N(4)	2.143(3)
Cu(1)-O(1)	1.985(3)	Cu(1)-N(3)	2.303(3)
Cu(1)-N(2)	2.101(3)	Cu(1)–N(1)	2.322(4)
O(2)-Cu(1)-O(1)	89.29(12)	N(2)-Cu(1)-N(3)	80.26(14)
O(2)-Cu(1)-N(2)	171.96(12)	N(4)-Cu(1)-N(3)	81.72(12)
O(1)-Cu(1)-N(2)	83.75(12)	O(2)-Cu(1)-N(1)	102.13(13)
O(2)-Cu(1)-N(4)	83.96(11)	O(1)-Cu(1)-N(1)	92.01(13)
O(1)-Cu(1)-N(4)	168.55(12)	N(2)-Cu(1)-N(1)	82.21(13)
N(2)-Cu(1)-N(4)	103.55(11)	N(4)-Cu(1)-N(1)	80.43(12)
O(2)-Cu(1)-N(3)	98.21(13)	N(3)-Cu(1)-N(1)	151.23(12)
O(1)- $Cu(1)$ - $N(3)$	108.47(12)		

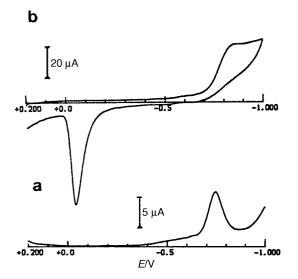

 $\label{eq:Fig.8} \textbf{Fig. 8} \quad \textbf{A ZORTEP drawing of the } [\text{Cu}(\text{Me}_2\text{DO2A})] \ \text{complex}.$

Fig. 8 is reported a ZORTEP⁴⁵ drawing of the molecular structure with the atomic labeling scheme; selected bond lengths and angles are given in Table 3. The structure consists of mononuclear molecules in which each copper(II) ion lies at the center of a distorted octahedron. The macrocyclic ligand coordinates the metal ion through its four tertiary amine groups in a folded manner as shown by the equatorial N(2)–Cu(1)–N(4) angle and the axial N(1)–Cu(1)–N(3) angle of 103.55(11) and 151.23(12)° respectively. Such a folding is typical for similar polyazamacrocycles.^{23,40} The four Cu–N bonds are significantly different from each other. The axial nitrogen atoms N(1) and

Table 4 Thermodynamic stability constants at 298 K for Me_2DO2A with copper(II) and sodium ions. I = 0.15 M NMe_4Cl

Reaction		
$Cu^{2+} + L^{2-} \longrightarrow CuL$	20.85(3)	
$Cu^{2+} + HL^{-} \Longrightarrow Cu(HL)^{+}$	12.74(4)	
$CuL + H^+ \rightleftharpoons Cu(HL)^+$	3.27(4)	
$Na^+ + L^{2-} \longrightarrow NaL^-$	1.96(1)	

Values in parentheses are standard deviations on the last significant figure.

Fig. 9 Cyclic (a) and differential pulse (b) voltammograms recorded at a platinum electrode on an aqueous (phosphate buffer, pH 7.4) solution of [Cu(Me₂DO2A)] (2.0×10^{-3} M). Scan rates: (a) 0.2; (b) 0.004 V s⁻¹.

N(3) exhibit much longer Cu–N bonds than the equatorial ones N(2) and N(4), probably due to steric reasons. The methyl groups bonded to the axial nitrogen atoms N(1) and N(3) exhibit a *cis* configuration with respect to the idealized macrocyclic plane. Two *cis* carboxylic groups complete the metal coordination in the equatorial plane using the oxygen atoms O(1) and O(2), respectively. The two co-ordinated oxygen atoms deviate from the equatorial plane defined by N(2), Cu(1), N(4) by 0.307(0.005) and -0.100(0.005) Å, respectively.

The stability of [Cu(Me₂DO2A)] in water solution has been determined by potentiometric titration. The thermodynamic stability constants for the formation of the copper(II) complex are reported in Table 4 which also contains data for the formation of the Na⁺ adduct. The ligand Me₂DO2A forms two highly stable copper(II) complexes in which the macrocycle behaves as either a pentadentate (CuHL⁺) or hexadentate ligand (CuL). At pH 7.4 the potentiometric measurements show the exclusive formation of CuL.

The electrochemical stability of [Cu(Me₂DO2A)] in water has also been evaluated by electrochemical measurements. Fig. 9 shows the voltammetric behavior in buffered (pH 7.4) aqueous solution of the complex in either cyclic or differential pulse voltammetry. The complex undergoes an irreversible reduction, which, as shown by the appearance of the anodic stripping peak in the cyclic voltammetric backscan illustrated in Fig. 9(a), involves an overall two-electron step accompanied by decomplexation and subsequent electrodeposition of copper metal. No trace of any directly associated reoxidation process was detected even at the scan rate of 1 V s⁻¹. The concomitance of two one-electron steps is confirmed by the fact that no resolution is gained in differential pulse voltammetry (Fig. 9b).

The absence of reversible Cu^{II}-Cu^I reduction suggests that the ligand assembly is not sufficiently flexible to support the increase of the ionic radius, thus leading to framework destruc-

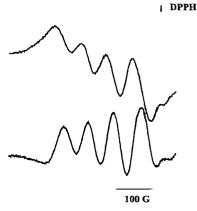


Fig. 10 X-Band EPR spectra of [Cu(Me $_2$ DO2A)] in aqueous solution at pH 7.4 (298 K).

tion. Finally, the rather negative value of the reduction process ($E_p = -0.81 \text{ V}$, vs. SCE, at 0.2 V s⁻¹) testifies to the stability of the copper(II) assembly.

The paramagnetic character does not allow one straightforwardly to determine the solution structure of [Cu(Me2-DO2A)]·3H₂O by NMR spectroscopy. For this reason, an EPR study was carried out. Fig. 10 shows the X-band EPR spectrum of the complex in water at pH 7.4. The relevant magnetic parameters are collected in Table 5. The fluid solution signal at room temperature is relatively broad with partial resolution of the copper(II) isotropic hyperfine (hpf) structure with g_{iso} > $g_{\text{electron}} = 2.0023$ (63Cu, natural abundance = 69.09%; 65Cu, natural abundance = 30.91%; $I_{\text{Cu-63}} = I_{\text{Cu-65}} = 3/2$). The spectrum exhibits a significant $\Delta H_{\rm iso}$ linewidth variation depending on the four copper m_I values. The EPR features are consistent with a noticeable "3d9" orbital contribution to the SOMO and are indicative of a significant value of the corresponding λ spinorbit coupling constant (>0). They also indicate the presence of structural anisotropies affecting the co-ordination sphere which are not completely averaged under the fluid solution fast motion conditions.³⁰ No nitrogen superhyperfine (shpf) resolution is evident in the fourth narrowest line $(m_I = +3/2)$ even in the second derivative mode, due to the actual ΔH_{iso} largely overlapping the corresponding N ligands shpf splittings (if any). Assuming a distorted octahedral co-ordination, an upper value of $\Delta H_{iso}(m_I = +3/2) = 5.1 \times 10^{-3} \text{ cm}^{-1} \ge A_{iso}(N)$ may be calculated for the relevant isotropic shpf interaction. The isotropic spectral intensity I accounts for the quantitative presence of [Cu(Me₂DO2A)].

In the glassy state (T=100 K) the EPR parameters are typical of a well resolved copper(II) axial structure with $g_{\parallel} > g_{\perp} > g_{\rm electron}$ and $A_{\parallel} > A_{\perp}$. The relevant $\langle g \rangle$ and $\langle A \rangle$ averaged parameters $[\langle g \rangle = \frac{1}{3}(g_{\parallel} + 2g_{\perp}), \ \langle A \rangle = \frac{1}{3}(A_{\parallel} + 2A_{\perp})]$ are in good agreement with the corresponding isotropic ones, suggesting that even under different experimental conditions the main copper(II) complexation geometry is basically retained.

The room-temperature X-band EPR spectrum of solid [Cu(Me₂DO2A)] consists of a very broad, axial lineshape $(g_{\parallel} > g_{\perp} > g_{\text{electron}})$ with an overall ΔH of 185.0(8) G. At 100 K the signal is still unresolved. The spectral features are typical of strong spin–spin magnetic interactions occurring in the microcrystalline copper(II) powder, so that the g_{\parallel} and g_{\perp} regions nearly collapse in a broad signal without any A_{aniso} spectral resolution.

On the basis of the Blumberg–Peisach approach, which accounts for the close relationship between g_{\parallel} and A_{\parallel} for equatorially co-ordinated $S=\frac{1}{2}$ paramagnetic metal complexes (in both glassy solution and the solid state), some important properties of copper(II) compounds may be determined. 46-48 In the case at hand, the actual composition of the equatorial atom donor set and the concomitant electric charge may be evaluated from the glassy solution EPR spectrum. The tetrahedral

Table 5 X-Band EPR parameters of the [Cu(Me₂DO2A)] complex in aqueous solution (RT and liquid nitrogen) and the solid state, respectively

g_{\parallel}	g_{\perp}	$\langle g \rangle^a$	$g_{\rm iso}$	$A_{\parallel}{}^{b}$	$A_{\perp}{}^{b}$	$\langle A \rangle^{a,b}$	$A_{\rm iso}^{b}$	$A(N)^{b,c}$
2.250	2.062(5)	2.125(5)	2.116(5)	15.8(6)	≤3.5(6)	≤7.7(6)	7.8(6)	≤5.1/8(6)
2.11	$9(8)^d$			$\leq 18.4(8)^d$	$\leq 18.4(8)^d$			

 $a \langle g \rangle = \frac{1}{3} (g_{\parallel} + 2g_{\perp}), \langle A \rangle = \frac{1}{3} (A_{\parallel} + 2A_{\perp}).$ $b A_i$ in 10^{-3} cm⁻¹. c Nitrogen isotropic shpf coupling constant value. $d g_i$ and A_i solid state anisotropic averaged values.

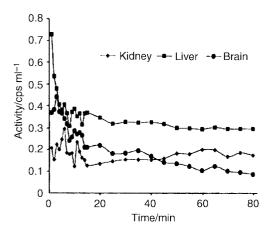


Fig. 11 Biodistribution of $[^{64}\text{Cu}(\text{Me}_2\text{DO2A})]$ in kidney, liver and brain of rabbit as determined by PET.

distortion parameter $f = g_{\parallel}/A_{\parallel}$ for an aqueous solution of $[Cu(Me_2DO2A)]$ is 0.144 cm which, according to the Blumberg–Peisach theory for octahedral copper(II) complexes, ⁴⁶ lies on the borderline between N_2O_2 and N_3O donor atom sets with an equatorial charge of 0 and +1, respectively. The solid state structure of $[Cu(Me_2DO2A)]$ as determined by the X-ray analysis shows a distorted octahedral geometry in which the equatorial plane is best defined by two nitrogen and two oxygen atoms. In water solution, hydrogen bonding interactions involving the carboxylate groups may lengthen the Cu–O bonds and ultimately result in a further distortion of the octahedral geometry.

Biodistribution studies

A preliminary biodistribution evaluation has shown that early images of [64Cu(Me₂DO2A)] reflect body vascularization then the radiotracer reaches quite quickly the emunctory organs: liver first then kidneys and bladder. Kinetic data for liver, kidney and brain are reported in Fig. 11 and shown as a plot of radioactivity concentration (counts per second cm⁻³) *versus* elapsed time from injection. The highest radioactivity is accumulated by the liver; this value decreases in the first 10 min as a consequence of the first pass of the bolus of radioactivity, then remains constant for the entire time, showing a slow clearance. Activity in kidney shows a similar behavior.

Uptake in the brain is quite low but was significant. This last result is very important because activity in brain, even if low, indicates that [64Cu(Me₂DO2A)] is able to cross the bloodbrain barrier, in accordance with the hypothesis of the neutral charge of the present copper-64 complex. Delayed images have not been obtained with this animal model due to the PET sensitivity limit related to the reduction in count rate for radiotracer decay and organ washout.

Concluding remarks

A new tetraazamacrocycle bearing two *trans* carboxylic arms has been synthesized and fully characterized. It has been found to react with copper(II) salts in aqueous solution to give the neutral octahedral complex [Cu(Me₂DO2A)] which has been characterized in both the solid state and solution. The use of

⁶⁴CuCl₂ as metal source has provided the radioactive derivative [⁶⁴Cu(Me₂DO2A)]. Though preliminary results concerning the use of [⁶⁴Cu(Me₂DO2A)] in nuclear medicine are at an early stage of development, the information obtained is quite promising and suggests one should continue the study of this kind of radiotracers through the development of different ligand structures as well as methods of generating ⁶⁴Cu salts. Indeed, unlike related ⁶⁴Cu-labeled macrocyclic complexes, ²² [⁶⁴Cu(Me₂-DO2A)] has also been found to cross the blood–brain barrier.

Acknowledgements

Regione Toscana (RRAT) is gratefully acknowledged for financial support. Thanks are due to Professor Piero Zanello (University of Siena, Italy) for assistance in the electrochemical study, Mr Oreste Sorace (IFC-CNR) for carrying out the PET acquisitions, Mr Luigi Taddei (IFC-CNR) for assistance with animal experiments and to Dr W. Oberhauser (ISSECC-CNR) for helpful discussion.

References

- 1 K. P. Wainwright, Coord. Chem. Rev., 1997, 166, 35; J. Chapman, G. Ferguson, J. F. Gallagher, M. C. Jennings and D. Parker, J. Chem. Soc., Dalton Trans., 1992, 345; L. F. Lindoy, The Chemistry of Macrocyclic Ligand Complexes, Cambridge University Press, Cambridge, 1989; R. D. Hancock and A. E. Martell, Chem. Rev., 1989, 89, 1875; P. V. Bernhardt and G. A. Lawrance, Coord. Chem. Rev., 1990, 104, 297; D. Parker, K. Pulukkody, T. J. Normann, A. Harrison, L. Royle and C. Walker, J. Chem. Soc., Chem. Commun., 1992, 1441; R. Dhillon, A. K. W. Stephens, S. L. Whitbread, S. F. Lincoln and K. P. Wainwright, J. Chem. Soc., Chem. Commun., 1995, 97; H. Maumela, R. D. Hancock, L. Carlton, J. H. Reibenspies and K. P. Wainwright, J. Am. Chem. Soc., 1995, 117, 6698; M. G. B. Drew, Coord. Chem. Rev., 1977, 24, 179; M. Spirlet, J. Rebizant and J. F. Desreux, Inorg. Chem., 1984, 23, 359; I. Murase, I. Ueda, N. Marubayashi, S. Kida, N. Matsumoto, M. Kudo, M. Toyohara, K. Hiate and M. Mikuriya, J. Chem. Soc., Dalton Trans., 1990, 2763; L. H. Tan, M. R. Taylor, K. P. Wainwright and P. A. Duckworth, J. Chem. Soc., Dalton Trans., 1993, 2921; M. Di Varia, F. Mani, N. Nardi, P. Stoppioni and A. Vacca, J. Chem. Soc., Dalton Trans., 1996, 2679.
- C. J. Anderson and M. J. Welch, Chem. Rev., 1999, 99, 2219; S. Liu and D. S. Edwards, Chem. Rev., 1999, 99, 2235; E. Soini, L. Hemmila and P. Dhalen, Ann. Biol. Clin. (Paris), 1990, 48, 567; R. A. Evangalista, A. Pollak, B. Allore, E. F. Templeton, R. C. Morton and E. P. Diamandis, Clin. Biochem., 1988, 21, 173; E. Lopez, C. Chypre, B. Alpha and G. Mathis, Clin. Chem., 1993, 39, 196; G. Mathis, Clin. Chem., 1995, 41, 1391; E. Soini and H. Kojola, Clin. Chem., 1983, 29, 65; I. Hemmila, V. M. Mukkala and S. Dakubu, Anal. Biochem., 1984, 137, 375; E. F. G. Dickson, A. Pollak and E. P. Diamandis, Photochem. Photobiol., 1995, 27, 3; A. D. Sherry, J. Less-Common Met., 1989, 149, 133; D. Parker, Chem. Br., 1994, 893; Comprehensive Supramolecular Chemistry, eds. J. M. Lehn, D. D. Macnicol, J. L. Atwood, J. E. Davies, D. N. Reinhoudt and F. Vogtle, Pergamon, Oxford, 1996, vol. 1, ch. 17; S. Aime, M. Botta and E. Terreno, Chem. Soc. Rev., 1998, 27, 19.
- 3 W. A. Volker and T. J. Hoffmann, Chem. Rev., 1999, 99, 2269; V. Alexander, Chem. Rev., 1995, 95, 273; D. Parker, Chem. Soc. Rev., 1990, 19, 271; D. Parker and K. J. Jankowski, in Advances in Metals in Medicine, eds. M. J. Abrams and B. A. Murrer, Jai Press, New York, 1993, vol. 1, ch. 2, p. 29; K. Devreese, V. Kofler-Mongold, C. Leutgeb, V. Weber, K. Vermeire, S. Schacht, J. Anne, E. De Clercq, R. Datema and G. Werner, J. Virol., 1996, 70, 689.
- 4 M. K. Moi, C. F. Meares, M. J. McCall, W. C. Cole and S. J. DeNardo, *Anal. Biochem.*, 1985, **148**, 249.

- 5 J. F. Desreux, Inorg. Chem., 1980, 19, 1319; X. Wang, T. Jin, V. Comblin, A. Lopez-Mut, E. Merciny and F. Desreux, Inorg. Chem., 1992, 31, 1095; S. Aime, A. S. Batsanov, M. Botta, J. A. K. Howard, D. Parker, K. Senanayake and G. Williams, Inorg. Chem., 1994, 33, 4696; C. J. Broan, K. J. Jankovski, R. Kataki, D. Parker, A. Randall and A. Harrison, J. Chem. Soc., Chem. Commun., 1990,
- 6 J. R. Morrow, S. Amin, C. H. Lake and M. R. Churchill, Inorg. Chem., 1993, 32, 4566; L. Carlton, R. D. Hancock, H. Maumela and K. P. Wainwright, J. Chem. Soc., Chem. Commun., 1994, 1007; S. Aime, A. Barge, M. Botta, D. Parker and A. S. De Sousa, J. Am. Chem. Soc., 1997, 119, 4767; P. Pittet, G. S. Laurence, S. F. Lincoln, M. L. Turonet and K. P. Wainwright, J. Chem. Soc., Chem. Commun., 1991, 1205; A. K. W. Stephens and S. F. Lincoln, J. Chem. Soc., Dalton Trans., 1993, 2123.
- 7 P. J. Blower, J. S. Lewis and J. Zweit, Nucl. Med. Biol., 1996, 23, 957. 8 C. J. Anderson, J. M. Connett, S. W. Schwarz, P. A. Rocque, L. W. Guo, G. W. Philpott, K. R. Zinn, C. F. Meares and M. J. Welk, J. Nucl. Med., 1992, 33, 1685.
- 9 B. E. Rogers, C. J. Anderson, J. M. Connett, L. W. Guo, W. B. Edwards and E. L. C. Sherman, *Bioconjugate Chem.*, 1996, 7, 511.
- 10 P. M. Smith-Jones, R. Fridich, T. A. Kaden, I. Novak-Hofer, K. Siebold, D. Tschudin and H. R. Maecke, Bioconjugate Chem., 1991, **2**, 415.
- 11 C. J. Anderson, P A. Rocque, P. A. Weinheimer, J. Mathias and M. J. Welch, J. Nucl. Med., 1993, 34, 461; J. Mathias, M. J. Welch, M. A. Gren, H. Diril, C. F. Meares, R. J. Gropler and S. R. Bergmann, J. Nucl. Med., 1990, 32, 475.
- 12 O. D. M. Hughes, M. C. Bishop, A. C. Perhins, M. Frier, M. R. Price and G. Denton, E. J. Nucl. Med., 1997, 24, 439.
- 13 D. L. Kukis, H. Diril, D. P. Greiner, S. J. DeNardo, G. L. DeNardo, Q. A. Salaco and C. F. Meares, Cancer, 1994, 73, 779.
- 14 I. Novak-Hofer, H. P. Amstutz, H. R. Macke, R. Schwarzbach, K. Zimmermann, J. J. Morgenthaler and P. A. Schubiger, Cancer Res., 1995, 55, 46.
- 15 G. L. DeNardo and S. J. DeNardo, in Cancer Therapy with Radiolabeled Antibody, ed. D. M. Goldenberg, CRC Press, Inc., Boca Raton, FL, 1995, p. 217.
- 16 C. J. Anderson, S. W. Schwarz, J. M. Connett, P. D. Cutler, L. W. Guo, G. J. Germain, G. W. Philpott, K. R. Zinn, D. P. Greiner, C. F. Meares and M. J. Welch, J. Nucl. Med., 1995, 36, 850.
- 17 B. E. Rogers, C. J. Anderson, J. M. Connett, L. W. Guo, K. R. Zinn and M. J. Welch. J. Labelled Compd. Radiopharm., 1995, 37, 544.
- 18 C. J. Anderson, B. E. Rogers, J. M. Connett, L. W. Guo, K. R. Zinn, S. W. Schwarz and M. J. Welch, J. Labelled Compd. Radiopharm., 1994 35 313
- 19 G. W. Philpott, S. W. Schwarz, C. J. Anderson, F. Dehdashti, J. M. Connett, K. R. Zinn, C. F. Meares, P. D. Cutler, M. J. Welk and B. A. Siegel, J. Nucl. Med., 1995, 36, 1818.
- 20 K. L. Kolsky, V. Joshi, G. E. Meinken, M. Sweet, L. F. Mausner and S. C. Srivastava, J. Nucl. Med., 1994, 35, 259P.
- 21 R. C. Mease, M. Chinol, L. F. Mausner, Z. Steplewski and S. C. Srivastava, J. Nucl. Med., 1992, 35, 942P.
- 22 T. M. Jones-Wilson, K. D. Deal, C. J. Anderson, D. W. McCarthy, Z. Kovacs, R. J. Motekaitis, A. D. Sherry, A. E. Martell and M. J. Welch, Nucl. Med. Biol., 1998, 25, 523.
- 23 M. Ciampolini, M. Micheloni, N. Nardi, P. Paoletti, P. Dapporto and F. Zanobini, J. Chem. Soc., Dalton Trans., 1984, 1357.
- 24 M. F. Summers, L. G. Marzilli and A. Bax, J. Am. Chem. Soc., 1986, 108, 4285.

- 25 V. Sklener, H. Miyashiro, G. Zon, H. T. Miles and A. Bax, FEBS Lett., 1986, 208, 94.
- 26 (a) P. K. Glasoe and F. A. Long, J. Phys. Chem., 1960, 64, 188; (b) K. Mikkelsen and S. O. Nielsen, J. Phys. Chem., 1960, 64, 632; (c) R. G. Bates, Determination of pH. Theory and Practice, Wiley, New York, 2nd edn., 1973, pp. 252, 253 and 375, 376; (d) R. Delgado, J. J Frausto Da Silva, M. T. S. Amorim, M. F. Cabral, S. Chaves and S. Costa, Anal. Chim. Acta, 1991, 245, 271.
- 27 M. Fontanelli and M. Micheloni, Proceedings of the 1st Spanish-Italian Congress on Thermodynamics of Complexes, Peniscola, Spain, 3-6th June 1990.
- 28 G. Gran, Analyst (London), 1952, 77, 661.
- 29 P. Gans, A. Sabatini and A. Vacca, J. Chem. Soc., Dalton Trans., 1985, 1195.
- 30 F. E. Mabbs and D. Collison, in Electron Paramagnetic Resonance of d Transition Metal Compounds, Elsevier, New York, 1992.
- 31 P. Lozos, B. M. Hoffman and C. G. Franz, Quantum Chemistry Program Exchange, Indiana University, 1974, vol. 20, p. 295.
- 32 A. J. C. Wilson (Editor), International Tables for X-Ray Crystallography, Kluwer Academic Publisher, Dordrecht, 1992, vol. C, p. 500.
- 33 A. J. C. Wilson (Editor), International Tables for X-Ray Crystallography, Kluwer Academic Publisher, Dordrecht, 1992, vol. C, p. 219.
- 34 S. Parkin, B. Moezzi and H. Hope, J. Appl. Crystallogr., 1995, 28,
- 35 (a) G. M. Sheldrick, SHELX 93, University of Göttingen, 1993; (b) A. Altomare, G. Cascarano, C. Giacovazzo and A. Guagliardi, J. Appl. Crystallogr., 1993, 26, 343.
- 36 A. Altomare, G. Cascarano, C. Giacovazzo, A. Guagliardi,
- M. C. Burla and G. M. Polidori, *J. Appl. Crystallogr.*, 1994, **27**, 435. 37 K. Kumar, C. A. Chang, L. C. Francesconi, D. D. Dischino, M. F. Malley, J. Z. Gougoutas and M. F. Tweedle, Inorg. Chem., 1994, 33, 3567.
- 38 C. F. G. C. Geraldes, M. C. Alpoine, M. P. M. Marques, A. D. Sherry and M. Singh, Inorg. Chem., 1985, 24, 3876; A. Bianchi, M. Micheloni and P. Paoletti, Coord. Chem. Rev., 1991, 110, 17.
- 39 C. F. G. C. Geraldes, A. D. Sherry, M. P. M. Marques, M. C. Alpoine and S. Cortes, J. Chem. Soc., Perkin Trans., 1991, 2, 137.
- 40 J. M. Weeks, M. R. Taylor and K. P. Wainwright, J. Chem. Soc., Dalton Trans., 1997, 317.
- 41 F. Desreux, E. Merciny and M. F. Leoncin, Inorg. Chem., 1981, 20,
- 42 J. Huskens, D. A. Torres, Z. Kovacs, J. P. Andrè, C. F. G. Geraldes and A. D. Sherry, Inorg. Chem., 1997, 36, 312.
- 43 S. Aime, M. Botta, F. Fedelli and F. Uggeri, *Inorg. Chem.*, 1992, 31, 2422
- 44 M. Di Varia, F. Mani and P. Stoppioni, J. Chem. Soc., Dalton Trans., 1998, 1879.
- 45 L. Zsolmai and H. Pzitzkow, ORTEP original program modified for PC, University of Heidelberg, Germany, 1994.
- 46 J. Peisach and W. E. Blumberg, Arch. Biochem. Biophys., 1974, 175, 691
- 47 N. D. Chasteen, in Vanadium in Biological System. Physiology and Biochemistry, Kluwer Academic Publisher, Dordrecht, 1990.
- 48 M. Casolaro, M. Chelli, M. Ginanneschi, F. Laschi, M. Muiz-Miranda, A. M. Papini and G. Sbrana, Spectrochim. Acta, 1999, 55,
- 49 M. Kodama and E. Kimura, J. Chem. Soc., Chem. Commun., 1975, 326.